ПРОГРАМА ПО МАТЕМАТИКА I. Алгебра 1. Цели и дробни рационални изрази и действия с тях. Формули за съкратено умножение. 2. Квадратен корен. Корен n-ти.

Размер: px
Започни от страница:

Download "ПРОГРАМА ПО МАТЕМАТИКА I. Алгебра 1. Цели и дробни рационални изрази и действия с тях. Формули за съкратено умножение. 2. Квадратен корен. Корен n-ти."

Препис

1 ПРОГРАМА ПО МАТЕМАТИКА I. Алгебра 1. Цели и дробни рационални изрази и действия с тях. Формули за съкратено умножение. 2. Квадратен корен. Корен n-ти. Коренуване на произведение, частно, степен и корен. Основно свойство на корените. 3. Абсолютна стойност (модул). 4. Уравнения: корен на уравнение, еквивалентност на уравнения. Основни теореми за еквивалентност. Уравнения от първа степен с едно неизвестно: решаване и изследване на решенията. 5. Квадратен тричлен. Квадратна функция. Квадратно уравнение. Формули на Виет. 6. Разлагане на квадратен тричлен на множители от първа степен. Графика на квадратна функция и използването Ј при определяне на знака на квадратния тричлен. Уравнения от по-висока степен, приводими към квадратни уравнения. Ирационални уравнения с едно неизвестно. Уравнения, съдържащи абсолютна стойност. 7. Степен с рационален показател: определение, свойства. Показателна функция: свойства, графика. Показателни уравнения. 8. Логаритъм: определение и свойства. Основни правила за логаритмуване. Формула за преминаване от една логаритмична основа към друга. Логаритмична функция: свойства и графика. Логаритмични уравнения. 9. Системи уравнения от първа степен с две неизвестни: геометрична интерпретация на решенията. Системи уравнения от първа степен с три неизвестни. Системи уравнения от втора степен с две неизвестни: основни методи за решаване. Решаване на уравнения и системи уравнения, съдържащи параметри. Изследване на решенията.

2 10. Неравенства: решение на неравенство, еквивалентност на неравенства. Основни теореми за еквивалентност. Неравенства от първа степен с едно неизвестно: решаване и изследване на решенията. Геометрично представяне на решенията върху числовата ос. Квадратни неравенства: решаване и изследване на решенията. Геометрично представяне на решенията върху числовата ос. Неравенства от по-висока степен: решаване чрез метода на интервалите. Използване свойствата на функциите, за решаване на основни видове ирационални, показателни и логаритмични неравенства. Неравенства, съдържащи абсолютна стойност. Системи неравенства от първа и втора степен с едно неизвестно. 11. Тригонометрични уравнения. Използване на свойствата на тригонометричните функции за решаване на тригонометрични неравенства. 12. Числови редици. Аритметична и геометрична прогресия - свойства. Формули за сумата на първите n члена. 13. Безкрайни числови редици. Сходимост. Граница. Сума от членовете на безкрайна геометрична прогресия с частно q,. 14. Функция. Граница на функции. Теореми за граница на функция. Граница на при. Непрекъснатост на функция. 15. Производна на функция. Геометричен и механичен смисъл на понятието производна. Производна на сбор, произведение, частно и степен на функции. Производни на тригонометрични функции. Производна на сложна функция. Формули за диференциране. Втора производна. Механичен смисъл на втората производна. 16. Нарастване и намаляване на функция. Локален максимум и локален минимум: определения, необходими и достатъчни условия за локален екстремум. Четност, нечетност и периодичност на функция. 17. Изследване на полиноми и рационални функции. 18. Най-голяма и най-малка стойност на функция.

3 II. Планиметрия, стереометрия и тригонометрия 19. Еднаквост. Признаци за еднаквост на триъгълници. Успоредни прави. Успоредник: видове успоредници, свойства. Окръжност и ъгъл. Централен, вписан и периферен ъгъл. Допирателна към окръжност. Триъгълник. Забележителни точки в триъгълника: център на описаната окръжност, център на вписаната окръжност, медицентър, ортоцентър. Вписан в окръжност и описан около окръжност четириъгълник. Средна отсечка на триъгълник и на трапец. Лице на триъгълник, успоредник и трапец. Лице на многоъгълник. 20. Хомотетия. Пропорционални отсечки. Теорема на Талес. Свойства на вътрешната и външната ъглополовяща на триъгълник. 21. Подобност. Признаци за подобност на триъгълници. Свойства на секущите на окръжност, които минават през точка, нележаща на окръжността. Връзка между лицата и подобните многоъгълници. 22. Метрични зависимости в правоъгълен триъгълник. Алгебричен метод за решаване на построителни задачи в планиметрията. Дължина на окръжност, лице на кръг и частите му. 23. Взаимно положение на две прави, на права и равнина и на две равнини в пространството. Ъгъл, определен от две кръстосани прави. Ъгъл, определен от права и равнина. Перпендикулярност на права и равнина. Линеен ъгъл на двустенен ъгъл. Перпендикулярни равнини. Успоредно и ортогонално проектиране. Теорема за трите перпендикуляра. Перпендикуляр и наклонена към една равнина. Трансверзала и ос на кръстосани прави. 24. Призма, паралелепипед, пирамида, пресечена пирамида: свойства, формули за лицата на повърхнините и обемите им. Свойство на успоредното сечение в пирамида. Сечение на призма и пирамида с равнина. 25. Цилиндър, конус, пресечен конус, сфера: свойства, формули за лицата на повърхнините и обемите им. 26. Тригонометрични функции: синус, косинус, тангенс, котангенс. Основни тригонометрични равенства. Тъждествени преобразования на тригонометрични изрази. 27. Тригонометрични зависимости в правоъгълния триъгълник. Решаване на правоъгълен триъгълник. Косинусова и синусова теорема. Решаване на

4 триъгълник. Формули за лице на триъгълник и четириъгълник. Правилен многоъгълник. Литература 1. Коларов, К. и др. Сборник от задачи по геометрия 7-10 клас. С., Коларов, К. и др. Сборник от задачи по алгебра 7-10 клас. Добрич, Тонев, И., Ч. Лозанов. Теми за кандидатстудентски изпити по математика. С., Чакърян, К., П. Сидеров. Кандидатстудентски конкурси по математика. С., Коларов, К. Избрани задачи по математика за кандидат-студенти. Добрич, Сканави, М. и др. Сборник задачи по математике для поступающих во вузы. М., Методически указания Конкурсният изпит по математика се състои в решаване на задачи, при които се използват знания от задължителната учебна програма. Това не бива да се тълкува като забрана за използване на знания, които надхвърлят обема на преподавания материал в курса по математика в средното училище. Изпитът е анонимен, писмен, с продължителност - 5 часа. Решението на всяка задача трябва да съдържа обяснения за използваните означения и логически обосновки въз основа на кои теореми, аксиоми или определения са извършени съответните доказателства, пресмятания и построения.

5 Чертежите трябва да са прегледни и съобразени със съдържанието на задачата. При по-сложни чертежи да се дават допълнителни пояснения и обосновки. Решението на всяка конкурсна задача се състои от относително обособени етапи. Всеки етап се оценява поотделно. По време на изпита кандидат-курсантите могат да ползват четиризначни математически таблици и формули, одобрени от МОН, например тези на Д. Серафимов, Н. Николов, Г. Коларов или на В. Брадис. Допуска се използването на писалка, химикалка (пишеща синьо), черен молив, гума, пергел и триъгълник. Не се разрешава използването на калкулатори, електронни бележници и портативни компютри.

МОДЕЛ НА НАЦИОНАЛНОТО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА В Х КЛАС ЗА УЧЕБНАТА ГОДИНА 1. Цели на НВО в Х клас съгласно чл. 44, ал. 1 от Наредба 1

МОДЕЛ НА НАЦИОНАЛНОТО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА В Х КЛАС ЗА УЧЕБНАТА ГОДИНА 1. Цели на НВО в Х клас съгласно чл. 44, ал. 1 от Наредба 1 МОДЕЛ НА НАЦИОНАЛНОТО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА В Х КЛАС ЗА УЧЕБНАТА 019 00 ГОДИНА 1. Цели на НВО в Х клас съгласно чл. 44, ал. 1 от Наредба 11 за оценяване на резултатите от обучението на учениците:

Подробно

годишно разпределение по математика за 8. клас 36 учебни седмици по 3 учебни часа = 108 учебни часа I срок 18 учебни седмици = 54 учебни часа II срок

годишно разпределение по математика за 8. клас 36 учебни седмици по 3 учебни часа = 108 учебни часа I срок 18 учебни седмици = 54 учебни часа II срок годишно разпределение по математика за 8. клас 36 учебни седмици по 3 учебни часа = 08 учебни часа I срок 8 учебни седмици = 54 учебни часа II срок 8 учебни седмици = 54 учебни часа на урок Вид на урока

Подробно

Microsoft Word - UIP_mat_7klas_

Microsoft Word - UIP_mat_7klas_ Приложение 2 УЧЕБНО-ИЗПИТНА ПРОГРАМА ПО МАТЕМАТИКА ЗА НАЦИОНАЛНОТО ВЪНШНО ОЦЕНЯВАНЕ В КРАЯ НА VII КЛАС І. Вид и времетраене Изпитът от националното външно оценяване е писмен. Равнището на компетентностите

Подробно

munss2.dvi

munss2.dvi ОТГОВОРИ И РЕШЕНИЯ 3(x + y)(x xy + y )y(x y) 1. (Б) Преобразуваме: (x y)(x + y)(x + y ) x(x xy + y ) = 3y (x + y)(x y) x = (x + y ) 3 y x y x x + y = 3 y x (x y ) 1 ( x y ) + 1 = 3 ( 3 ) 1 9 3 ( 3 ) +

Подробно

M10_18.dvi

M10_18.dvi СЪДЪРЖАНИЕ Тема. Начален преговор Началенпреговор.Алгебра... 7 Началенпреговор.Геометрия... Тема. Ирационални изрази. Ирационални уравнения. Ирационални изрази.... 5. Преобразуване на ирационални изрази...

Подробно

\376\377\000T\000E\000M\000A\000_\0001\000_\0002\0007\000.\0000\0005\000.\0002\0000\0001\0003

\376\377\000T\000E\000M\000A\000_\0001\000_\0002\0007\000.\0000\0005\000.\0002\0000\0001\0003 МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА 7.0.0 Г. ВАРИАНТ Отговорите на задачите от. до 0. включително отбелязвайте в листа за отговори!. Колко на брой от

Подробно

munss2.dvi

munss2.dvi ОТГОВОРИ И РЕШЕНИЯ 1. (В) Даденото неравенство няма смисъл, в случай че някой от знаменателите на двата дробни израза е равен на нула. Тъй като x 4 = (x+)(x ), то x 4 = 0 за x = и за x =. Понеже x +3 >

Подробно

А Л Г Е Б Р А I.Решете уравненията и системите уравнения: x + 2 = 3 x+1 x 2 x 2 x 2 x + 8 = 5 x 2 4 x x 5 + x 1 = x 2 +6x+9 x

А Л Г Е Б Р А I.Решете уравненията и системите уравнения: x + 2 = 3 x+1 x 2 x 2 x 2 x + 8 = 5 x 2 4 x x 5 + x 1 = x 2 +6x+9 x А Л Г Е Б Р А I.Решете уравненията и системите уравнения: 1.. + = 3 +1 + 8 = 5 4 3 3. 4. 4 5 + 1 = +6+9 +3 1 + 4 = 1 4 + 5. +1 + = 9 +1 10 6. ( -5) +10( -5)+4=0 7. 11 3-3 = 3 5+6 8. 1 +30 1 16 = 3 7 9

Подробно

ПРОЧЕТЕТЕ ВНИМАТЕЛНО СЛЕДНИТЕ УКАЗАНИЯ:

ПРОЧЕТЕТЕ ВНИМАТЕЛНО СЛЕДНИТЕ УКАЗАНИЯ: М И Н И С Т Е Р С Т В О Н А О Б Р А З О В А Н И Е Т О И Н А У К А Т А ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА 6 май 9 г. Вариант УВАЖАЕМИ ЗРЕЛОСТНИЦИ, Тестът съдържа 8 задачи по математика от два вида:

Подробно

tu_ mat

tu_ mat ТЕХНИЧЕСКИ УНИВЕРСИТЕТ СОФИЯ ТЕСТ ПО МАТЕМАТИКА юли 00 г. ВАРИАНТ ВТОРИ ПЪРВА ЧАСТ Всяка от следващите 0 задачи има само един верен отговор. Преценете кой от предложените пет отговора на съответната задача

Подробно

КНИГА ЗА УЧИТЕЛЯ ISBN

КНИГА ЗА УЧИТЕЛЯ ISBN КНИГА ЗА УЧИТЕЛЯ ISBN 978-954-8-40-7 Книга за учителя по математика за 0 клас Автори Емил Миланов Колев, 09 Иван Георгиев Георгиев, 09 Стелиана Миткова Кокинова, 09 Графичен дизайн Николай Йорданов Пекарев,

Подробно

DZI Tema 2

DZI Tema 2 МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА 6.05.05 г. ВАРИАНТ Отговорите на задачите от. до 0. включително отбелязвайте в листа за отговори!. Кое от числата е различно

Подробно

Задача 1. Да се реши уравнението софийски университет св. климент охридски писмен конкурсен изпит по математика II 31 март 2019 г. Tема 1 (x 1) x 2 =

Задача 1. Да се реши уравнението софийски университет св. климент охридски писмен конкурсен изпит по математика II 31 март 2019 г. Tема 1 (x 1) x 2 = Задача 1. Да се реши уравнението софийски университет св. климент охридски писмен конкурсен изпит по математика II 1 март 019 г. Tема 1 x 1) x = x x 6. Решение: 1.) При x

Подробно

(Microsoft Word - \342\340\360\350\340\355\362 2)

(Microsoft Word - \342\340\360\350\340\355\362 2) ТЕХНИЧЕСКИ УНИВЕРСИТЕТ ВАРНА ТЕСТ ПО МАТЕМАТИКА 0 юли 0 г Вариант Периодичната десетична дроб, () е равна на: 6 6 6 ; б) ; в) ; г) 5 50 500 9 Ако a= 6, b= 6 +, то изразът a + b има стойност: b a ; б) ;

Подробно

ХИМИКОТЕХНОЛОГИЧЕН И МЕТАЛУРГИЧЕН УНИВЕРСИТЕТ ФАКУЛТЕТ ПО ХИМИЧНО И СИСТЕМНО ИНЖЕНЕРСТВО Одобрил:... Директор на ДФМТН /доц. д-р А. Александров/ Утвър

ХИМИКОТЕХНОЛОГИЧЕН И МЕТАЛУРГИЧЕН УНИВЕРСИТЕТ ФАКУЛТЕТ ПО ХИМИЧНО И СИСТЕМНО ИНЖЕНЕРСТВО Одобрил:... Директор на ДФМТН /доц. д-р А. Александров/ Утвър ХИМИКОТЕХНОЛОГИЧЕН И МЕТАЛУРГИЧЕН УНИВЕРСИТЕТ ФАКУЛТЕТ ПО ХИМИЧНО И СИСТЕМНО ИНЖЕНЕРСТВО Одобрил:... Директор на ДФМТН /доц. д-р А. Александров/ Утвърдил:... Декан на ФХСИ /доц. д-р П. Джамбов / У Ч Е

Подробно

Как да съставим задачи като използваме подобните триъгълници, свързани с височините на триъгълника

Как да съставим задачи като използваме подобните триъгълници, свързани с височините на триъгълника Съставяне на задачи с подобни триъгълници, свързани с височините на триъгълника Бистра Царева, Боян Златанов, Катя Пройчева Настоящата работа е адресирана към учителите по математика и техните изявени

Подробно

Microsoft Word - variant1.docx

Microsoft Word - variant1.docx МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА.05.019 г. Вариант 1 МОДУЛ 1 Време за работа 90 минути Отговорите на задачите от 1. до 0. включително отбелязвайте в листа

Подробно

Т. ВИТАНОВ П. НЕДЕВСКИ М. КЬОСЕВА Е. СТОИМЕНОВА КНИГА за УЧИТЕЛЯ Т. Витанов П. Недевски М. Кьосева Е. Стоименова

Т. ВИТАНОВ П. НЕДЕВСКИ М. КЬОСЕВА Е. СТОИМЕНОВА КНИГА за УЧИТЕЛЯ Т. Витанов П. Недевски М. Кьосева Е. Стоименова Т. ВИТАНОВ П. НЕДЕВСКИ М. КЬОСЕВА Е. СТОИМЕНОВА КНИГА за УЧИТЕЛЯ Т. Витанов П. Недевски М. Кьосева Е. Стоименова Теодоси Асенов Витанов, Петър Спиридонов Недевски, Мариана Димитрова Кьосева, Евгения Асенова

Подробно

VTU_KSK14_M3_sol.dvi

VTU_KSK14_M3_sol.dvi Великотърновски университет Св. св. Кирил и Методий 07 юли 01 г. ТРЕТА ТЕМА Задача 1. Да се решат уравненията: 1.1. x +x+1 = 1 x 1 + 8x 1 x 3 1 ; 1.. log x+log x 3 = 0; 1.3. x+1 +6. x 1 = 0. Задача. Дадено

Подробно

ИКОНОМИЧЕСКИ УНИВЕРСИТЕТ - В А Р Н А Ф А К У Л Т Е Т И Н Ф О Р М А Т И К А КАТЕДРА СТАТИСТИКА И ПРИЛОЖНА МАТЕМАТИКА УТВЪРЖДАВАМ: Ректор: (Проф. д-р Пл

ИКОНОМИЧЕСКИ УНИВЕРСИТЕТ - В А Р Н А Ф А К У Л Т Е Т И Н Ф О Р М А Т И К А КАТЕДРА СТАТИСТИКА И ПРИЛОЖНА МАТЕМАТИКА УТВЪРЖДАВАМ: Ректор: (Проф. д-р Пл ИКОНОМИЧЕСКИ УНИВЕРСИТЕТ - В А Р Н А Ф А К У Л Т Е Т И Н Ф О Р М А Т И К А КАТЕДРА СТАТИСТИКА И ПРИЛОЖНА МАТЕМАТИКА УТВЪРЖДАВАМ: Ректор: (Проф. д-р Пл. Илиев) У Ч Е Б Н А П Р О Г Р А М А ПО ДИСЦИПЛИНАТА:

Подробно

Кирил Банков Илиана Цветкова Даниела Петрова Гергана Николова Стефчо Наков КНИГА ЗА УЧИТЕЛЯ

Кирил Банков Илиана Цветкова Даниела Петрова Гергана Николова Стефчо Наков КНИГА ЗА УЧИТЕЛЯ Кирил Банков Илиана Цветкова Даниела Петрова Гергана Николова Стефчо Наков КНИГА ЗА УЧИТЕЛЯ КИРИЛ БАНКОВ ИЛИАНА ЦВЕТКОВА ДАНИЕЛА ПЕТРОВА ГЕРГАНА НИКОЛОВА СТЕФЧО НАКОВ КНИГА ЗА УЧИТЕЛЯ Математика 10. клас

Подробно

ДИМЧО СТАНКОВ

ДИМЧО СТАНКОВ ДИМЧО СТАНКОВ c, r E ( ) ln ( ) (ln ) (З) (П) r() F (, ) k (З) О v МАТЕМАТИЧЕСКИ АНАЛИЗ за студенти по икономика 7 П Р Е Д Г О В О Р Настоящият учебник е предназначен за студентите от специалност Икономика

Подробно

Microsoft Word - VM22 SEC66.doc

Microsoft Word - VM22 SEC66.doc Лекция 6 6 Теорема за съществуване и единственост Метричното пространство C [ a b] Нека [ a b] е ограничен затворен интервал и да разгледаме съвкупността на непрекъснатите функции f ( определени в [ a

Подробно

УТВЪРДИЛ: Директор : (име, фамилия, подпис) ТЕМАТИЧНО РАЗПРЕДЕЛЕНИЕ ЗИП МАТЕМАТИКА 3. клас 32 седмици х 1 ч. седмично = 32 ч. годишно Месец Седм

УТВЪРДИЛ: Директор : (име, фамилия, подпис) ТЕМАТИЧНО РАЗПРЕДЕЛЕНИЕ ЗИП МАТЕМАТИКА 3. клас 32 седмици х 1 ч. седмично = 32 ч. годишно Месец Седм УТВЪРДИЛ: Директор :...... (име, фамилия, подпис) ТЕМАТИЧНО РАЗПРЕДЕЛЕНИЕ ЗИП МАТЕМАТИКА 3. клас 32 седмици х 1 ч. седмично = 32 ч. годишно Месец Седмица на тема Тема на урока 09 1. 1. Начален преговор.

Подробно

Microsoft Word - VM-LECTURE21.doc

Microsoft Word - VM-LECTURE21.doc Лекция Числови редове Определения и примери Абсолютна и условна сходимост Числовите редове представляват безкрайни суми () = L L Величината се нарича общ член на реда Сумирането в () започва от = но по

Подробно

Microsoft Word - PRMAT sec99.doc

Microsoft Word - PRMAT sec99.doc Лекция 9 9 Изследване на функция Растене, намаляване и екстремуми В тази лекция ще изследваме особеностите на релефа на графиката на дадена функция в зависимост от поведението на нейната производна Основните

Подробно

Тест за кандидатстване след 7. клас Невена Събева 1. Колко е стойността на израза : 8? (А) 201; (Б) 226; (В) 1973; (Г) На колко е ра

Тест за кандидатстване след 7. клас Невена Събева 1. Колко е стойността на израза : 8? (А) 201; (Б) 226; (В) 1973; (Г) На колко е ра Тест за кандидатстване след 7 клас Невена Събева 1 Колко е стойността на израза 008 00 : 8? (А) 01; (Б) 6; (В) 197; (Г) 198 На колко е равно средното аритметично на 1, 1, и 1,? (А) 4, 15(6); (Б) 49, ;

Подробно

Разпределение ИУЧ МАТ 2 клас 2019

Разпределение ИУЧ МАТ 2 клас 2019 УТВЪРДИЛ Директор:... (име, фамилия, подпис) ТЕМАТИЧНО РАЗПРЕДЕЛЕНИЕ ИУЧ по предмета Математика 2. клас 32 седмици х 1 ч. седмично = 32 ч. годишно Месец Седмица на Тема на урока Очаквани резултати от обучението

Подробно

10_II_geom_10

10_II_geom_10 Стр / Тест 5 D Стр, Зад в) D D os8 Стр, Зад ; 6 ; R? От синусова теорема следва, R sin 6 6 5 R ; R ; R ; R sin 6 Стр, Зад D - успоредник, ; D 6 ; OD 6 ; D D 6 5 O D O 5; DO От косинусова теорема за OD

Подробно

Microsoft Word - Sem8-Pharm-2018.docx

Microsoft Word - Sem8-Pharm-2018.docx Семинар 8 1 / 7 Семинар 8: Комплексни числа. Вектори в тримерното пространство Комплексно число, с: c z (, ) + + j а Re[c] реална част; Im[c] имагинерна част; j 1 r c + - модул на комплексното число (к.

Подробно

ОУ,ПРОФЕСОР ИВАН БАТАКЛИЕВ ГР. ПАЗАРДЖИК ПРОБЕН ИЗПИТ ПО МАТЕМАТИКА ЗАДАЧИ С ИЗБИРАЕМ ОТГОВОР г. ПЪРВИ МОДУЛ 1. Ако х 5у = 5, колко е сто

ОУ,ПРОФЕСОР ИВАН БАТАКЛИЕВ ГР. ПАЗАРДЖИК ПРОБЕН ИЗПИТ ПО МАТЕМАТИКА ЗАДАЧИ С ИЗБИРАЕМ ОТГОВОР г. ПЪРВИ МОДУЛ 1. Ако х 5у = 5, колко е сто ОУ,ПРОФЕСОР ИВАН БАТАКЛИЕВ ГР. ПАЗАРДЖИК ПРОБЕН ИЗПИТ ПО МАТЕМАТИКА ЗАДАЧИ С ИЗБИРАЕМ ОТГОВОР 28. 04. 2018 г. ПЪРВИ МОДУЛ 1. Ако х 5у = 5, колко е стойността на израза 5 5.(х 5у)? А) 0 Б) 30 В) 20 Г) 15

Подробно

СЪЮЗ НА МАТЕМАТИЦИТЕ В БЪЛГАРИЯ – СЕКЦИЯ БУРГАС

СЪЮЗ НА МАТЕМАТИЦИТЕ В БЪЛГАРИЯ – СЕКЦИЯ БУРГАС СЪЮЗ Н МТЕМТИЦИТЕ ЪЛГРИЯ СЕКЦИЯ УРГС ПРОЕН ИЗПИТ ПО МТЕМТИК З 7 КЛС.3.9 г. УЖЕМИ СЕДМОКЛСНИЦИ, Тестът съдържа 5 задачи. 7 от тях са с избираем отговор с четири възможности за отговор, от които само един

Подробно

Microsoft Word - VM-LECTURE06.doc

Microsoft Word - VM-LECTURE06.doc Лекция 6 6 Уравнения на права и равнина Уравнение на права в равнината Тук ще разглеждаме равнина в която е зададена положително ориентирана декартова координатна система O с ортонормиран базис i и j по

Подробно

Microsoft Word - Lecture 14-Laplace Transform-N.doc

Microsoft Word - Lecture 14-Laplace Transform-N.doc Лекция 4: Интегрално преобразувание на Лаплас 4.. Дефиниция и образи на елементарните функции. Интегралното преобразувание на Лаплас Laplac ranorm се дефинира посредством израза: Λ[ ] преобразувание на

Подробно

Разпределение ИУЧ МАТ 4. клас.

Разпределение ИУЧ МАТ 4. клас. УТВЪРДИЛ: Директор:... (Име, фамилия, подпис) ТЕМАТИЧНО РАЗПРЕДЕЛЕНИЕ ИУЧ по предмета Математика 4. клас 34 седмици х 1 ч. седмично = 34 ч. годишно Месец Седмица на тема Тема на урока Очаквани резултати

Подробно

Проект BG05M20P Подкрепа за успех 30. СРЕДНО УЧИЛИЩЕ БРАТЯ МИЛАДИНОВИ Приложение 2 ПРОГРАМА И ГРАФИК НА ДОПЪЛНИТЕЛНОТО ОБУЧЕНИЕ ПО БЪЛГА

Проект BG05M20P Подкрепа за успех 30. СРЕДНО УЧИЛИЩЕ БРАТЯ МИЛАДИНОВИ Приложение 2 ПРОГРАМА И ГРАФИК НА ДОПЪЛНИТЕЛНОТО ОБУЧЕНИЕ ПО БЪЛГА ПРОГРАМА И ГРАФИК НА ДОПЪЛНИТЕЛНОТО ОБУЧЕНИЕ ПО БЪЛГАРСКИ ЕЗИК И ЛИТЕРАТУРА НА ГРУПА С УЧЕНИЦИ ОТ 9 КЛАС Място на Брой ове Възраждането в България причини за възникването му, ролята и следиците от него,

Подробно

10 Годишен преговор Уроци стр Цели изрази Важно! Рационален израз израз, в който числата са записани с букви и цифри и са свързан

10 Годишен преговор Уроци стр Цели изрази Важно! Рационален израз израз, в който числата са записани с букви и цифри и са свързан 10 Годишен преговор Уроци 2.1 2.30 стр. 32 93 10.1 Цели изрази Рационален израз израз, в който числата са записани с букви и цифри и са свързани със знаци за действия събиране, изваждане, умножение и деление.

Подробно

Mathematica CalcCenter

Mathematica CalcCenter Mathematica CalcCenter Основни възможности Wolfram Mathematica CalcCenter е разработен на базата на Mathematica Professional и първоначално е бил предназначен за технически пресмятания. Информация за този

Подробно

Microsoft Word - зацайча-ваѕианч1качоÐflЊП.docx

Microsoft Word - зацайча-ваѕианч1качоÐflЊП.docx МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА VII клас, 9 юни 09 година ВАРИАНТ ПЪРВА ЧАСТ (60 минути) Отговорите на задачите от. до 7. включително отбелязвайте в листа

Подробно