Решения на задачите от Тема на месеца за м. март 2018 Даден е многоъгълник, който трябва да бъде нарязан на триъгълници. Разрязването става от връх къ

Размер: px
Започни от страница:

Download "Решения на задачите от Тема на месеца за м. март 2018 Даден е многоъгълник, който трябва да бъде нарязан на триъгълници. Разрязването става от връх къ"

Препис

1 Решения на задачите от Тема на месеца за м. март 2018 Даден е многоъгълник, който трябва да бъде нарязан на триъгълници. Разрязването става от връх към несъседен връх и открай до край, без линиите на разрезите да се пресичат във вътрешна точка на многоъгълника. На Фигура 1 е показано едно допустимо (правилно) нарязване на осмоъгълник (пунктираните линии са разрезите). Фигура 2 е пример Фиг. 1 Фиг.2 на неправилно нарязване на същия многоъгълник, защото разрезите по диагонала А1А5 и по диагонала А2А6 се пресичат във вътрешна за многоъгълника точка. Резултатът от нарязването на някоя фигура на триъгълници се нарича триангулация на фигурата. Тук ще разглеждаме само триангулации, получени по гореописания начин на рязане. Сумата от дължините на всички разрези, необходими за получаване на дадена триангулация, наричаме дължина на тази триангулация. Например, сумата на дължините на отсечките А7А1, А1А6, А2А6, А2А5, и А5А3 на Фигура 1 е дължината на представената на тази фигура триангулация на осмоъгълника. Сред всички триангулации на даден многоъгълник можем да търсим такава с минимална дължина (т.е. най-къса триангулация) или такава с максимална дължина (т.е. най-дълга триангулация). Ако изходният многоъгълник е

2 Фиг. 3 четириъгълникът на Фиг. 3, имаме само две триангулации. Едната се получава, като разрежем фигурата по диагонала АС, а другата когато разрезът е по диагонала ВD. Ако направим рязането по по-късия диагонал АС, получаваме триангулация с минимална дължина. Ако разрязването е по по-дългия диагонал ВD, триангулацията ще е с максимална дължина. Задача 1. Даден е петоъгълник с върхове в точките А1(3,2), А2(6,1), А3(9,3), А4(7,7), А5(3,6). 1 а) Каква е дължината на най-късата триангулация? 1 б) Каква е дължината на най-дългата триангулация? Задача 2. Даден е правилен шестоъгълник със страна 5 см. 2 а) Каква е дължината на най-късата триангулация? 2 б) Каква е дължината на най-дългата триангулация? Задача 3. Даден е шестоъгълник с върхове в точките А1(3,1), А2(7,1), А3(11,5), А4(9,8), А5(4,9), А6(2,6). Каква е дължината на най-късата триангулация? Отговори на задачите Задача Отговор 1 а) б) а) б) Решение на Задача 1. Петоъгълникът е изобразен на Фиг. 4. В този случай възможните триангулации са твърде прости. Една от тях е показана на Фиг. 4 с пунктирани линии. Двата диагонала излизат от върха А 1. Подобна триангулация има за всеки от върховете на петоъгълника. Че няма други допустими триангулации, можем лесно да се убедим. Каквито и три диагонала в петоъгълника да вземем, поне два от тях имат общ край (защото върховете на петоъгълника са 5, а краищата на трите диагонала са 6). Нека това е А 1. От този връх излизат само два диагонала А 1 А 3 и А 1 А 4. Третият диагонал на триангулацията ще има за свой край поне една от точките А 2 или А 5. Ако А 2 е негов край, то другият му край е или в А 5 или в А 4. И в двата случая този трети диагонал ще пресича диагонала А 1 А3 във вътрешна точка, а това е недопустимо за разглежданите от нас триангулации. По аналогичен начин разсъждаваме и когато третият диагонал има А 5 за свой

3 край. Това противоречие показва, че допустимите триангулации са като изобразената на Фиг. 4. До същия извод можем да стигнем и по друг начин. Ще считаме, че петоъгълникът е получен като към четириъгълник е добавана още една точка. На Фиг. 4 можем да считаме, че към върховете А 1 А 3 А 4 А 5 е добавен още един връх А 2. Всяка триангулация на четириъгълника А 1 А 3 А 4 А 5 става триангулация на петоъгълника А 1 А 2 А 3 А 4 А 5, ако към нея добавим диагонала А 1 А 3. От друга страна, както видяхме по-горе - в условието на темата - за всеки четириъгълник има само две триангулации и това са диагоналите на четириъгълника. В случая това са диагоналите А 1 А 4 и А 3 А 5. Следователно, всяка триангулация на петоъгълника, която съдържа диагонала А 1 А 3 може да съдържа само още един от двата диагонала А 1 А 4 и А 3 А 5. И в двата случая става дума за триангулация от два диагонала, излизащи от връх на петоъгълника. Дължината на всеки диагонал може да се намери с бутона на ГеоГебра, като се използва следния файл. След това могат да се пресметнат дължините на допустимите триангулации, като сума от дължините на съответните диагонали. Най-къса се оказва триангулацията с два диагонала, излизащи от връх А 2. Тя има дължина сантиметра. Това е отговорът на Задача 1 а). Най-дългата триангулация се състои от два диагонала, излизащи от връх А 3. Тя е с дължина сантиметра. Това е отговорът на задача 1 б). Фиг. 4 Разбира се, в дадения случай, когато върховете на петоъгълника имат целочислени координати, намирането на дължините на диагоналите може лесно да стане и с теоремата на Питагор:. Дължините на възможните триангулации са:,,,,. Тези дължини се сравняват лесно с просто око. Най-къса е триангулацията, състояща се от диагоналите, а най-дълга от диагоналите. Остава да пресметнем с

4 точност до стотните стойността на и стойността на Решение на Задача 2.. За шестоъгълник възможните триангулации са много повече (общо 14). За да разберем защо това е така, ще си послужим с разсъжденията в Задача 2 и с шестоъгълника, изобразен на Фиг. 5а. Всяка триангулация на този шестоъгълник, която съдържа диагонала ще триангулира и петоъгълника А 1 А 3 А 4 А 5 А 6. Ние обаче вече знаем как изглеждат триангулациите на петоъгълника. Те са общо 5 и са еднотипни: от всеки връх на А 1 А 3 А 4 А 5 А 6 излизат по два диагонала. Всяка от тях, заедно с, образува триангулация на целия шестоъгълник. Тези възможни триангулации са представени на фигурите 5а 5д. По подобен начин всеки от диагоналите А 2 А 4, А 3 А 5, А 4 А 6, А 5 А 1, А 6 А 2 поражда 5 свои триангулации на шестоъгълника. Много от тях обаче се повтарят и дори потретват. Не е трудно да се види, че различните са точно 14 на брой. В Задача 2 шестоъгълникът е правилен и за него триангулациите от Фиг. 5а до Фиг. 5д са изобразени на фигурите от 6а до 6д. Всички останали триангулации на правилния шестоъгълник ще се получат от тях чрез последователно завъртане на 60 около центъра на многоъгълника. При завъртане дължините на триангулациите не се променят. Затова ще боравим само с дължините на триангулациите, представени с фигурите от 6а до 6д. Сравняването на дължините на тези триангулации е тривиално. Триангулацията на 5в се състои от три къси диагонала, докато във всички останали триангулации имаме два къси и един дълъг диагонал. С помощта на теоремата на Питагор не е трудно да се види, че всеки къс диагонал има дължина а дългия диагонал има големина 10 сантиметра. Същото може да се види и с бутона на ГеоГебра като се използва следния файл. Затова дължината на триангулацията от 6в е приблизително равна на , а всички останали Фиг. 5а Фиг. 5б

5 Фиг. 5в Фиг. 5г Фиг. 5д триангулации имат приблизителна дължина Следователно, отговорът на задача 2 а) е 25.98, а отговорът на задача 2 б) е Фиг. 6а Фиг. 6б

6 Фиг. 6в Фиг. 6г Фиг. 6д Решение на Задача 3. Шестоъгълникът в тази задача не е правилен и за него трябва да се пресметнат дължините на всичките 14 триангулации. Измерването на дължините на диагоналите става с бутона на ГеоГебра и с помощта на следния файл. Тъй като координатите на върховете на шестоъгълника сега са цели числа, теоремата на Питагор дава възможност дължините на диагоналите да се представят в много прегледен и лесен за сравняване вид - като квадратни корени на цели числа. След това се пресмятат дължините на 14-те триангулации и се сравняват една с друга. Най-къса се оказва триангулацията от тип 5в, която се състои от диагоналите,,. С точност до стотните от сантиметъра, тя има дължина сантиметра. Това е отговорът на задача 3. Със задачите от тази тема отлично са се справили (с пълен брой точки - 50) Ани Динчева, Айлин Али, Катерина Костадинова, Калоян Цветков, Кирил Цанев, Любомир Костов, Пламен Иванов, Стефан Стоянов. Добър резултат (41 точки) е постигнал също и Михаил Цветков.

7 Броят на различните триангулации на един изпъкнал n-ъгълник се нарича число на Каталан (Catalan number) за този многоъгълник и се означава с C n. Тези числа се появяват често и играят важна роля в комбинаториката и информатиката. За тях има обилна информация в интернет (виж, например, В обсъждането на тази тема се включиха Ивайло Кортезов, Тони Чехларова, Николай Николов и Петър Кендеров. Отговорността за окончателното формулиране на темата и описанието на решенията е на Петър Кендеров. Логото на темата е направено от Койя Чехларова. Уеб-поддържката и техническото осигуряване са дело на Тодор Брънзов и Георги Гачев.

Основен вариант за клас Задача 1. (4 точки) На графиката на полином a n x n + a n 1 x n a 1 x + a 0, чиито коефициенти a n, a n 1,..., a 1

Основен вариант за клас Задача 1. (4 точки) На графиката на полином a n x n + a n 1 x n a 1 x + a 0, чиито коефициенти a n, a n 1,..., a 1 Основен вариант за 10 12 клас Задача 1. (4 точки) На графиката на полином a n x n + a n 1 x n 1 + + a 1 x + a 0, чиито коефициенти a n, a n 1,..., a 1, a 0 са цели числа, са отбелязани две точки с целочислени

Подробно

Р Е П У Б Л И К А Б Ъ Л Г А Р И Я М И Н И С Т Е Р С Т В О Н А О Б Р А З О В А Н И Е Т О, М Л А Д Е Ж Т А И Н А У К А Т А НАЦИОНАЛНА ОЛИМПИАДА ПО МАТЕМ

Р Е П У Б Л И К А Б Ъ Л Г А Р И Я М И Н И С Т Е Р С Т В О Н А О Б Р А З О В А Н И Е Т О, М Л А Д Е Ж Т А И Н А У К А Т А НАЦИОНАЛНА ОЛИМПИАДА ПО МАТЕМ Т Е М А ЗА 4 К Л А С Задача. Дуорите са същества, които имат два рога, а хепторите имат 7 рога. В едно стадо имало и от двата вида същества, а общият брой на рогата им бил 6. Колко дуори и хептори е имало

Подробно

IATI Day 1/Junior Task 1. Trap (Bulgaria) X INTERNATIONAL AUTUMN TOURNAMENT IN INFORMATICS SHUMEN 2018 Задача 1. Капан Образуваме редица от точки, кои

IATI Day 1/Junior Task 1. Trap (Bulgaria) X INTERNATIONAL AUTUMN TOURNAMENT IN INFORMATICS SHUMEN 2018 Задача 1. Капан Образуваме редица от точки, кои Task 1. Trap (Bulgaria) Задача 1. Капан Образуваме редица от точки, които са върхове с целочислени координати в квадратна решетка. Всеки две последователни точки от редицата определят единична хоризонтална

Подробно

VTU_KSK14_M3_sol.dvi

VTU_KSK14_M3_sol.dvi Великотърновски университет Св. св. Кирил и Методий 07 юли 01 г. ТРЕТА ТЕМА Задача 1. Да се решат уравненията: 1.1. x +x+1 = 1 x 1 + 8x 1 x 3 1 ; 1.. log x+log x 3 = 0; 1.3. x+1 +6. x 1 = 0. Задача. Дадено

Подробно

СОФИЙСКА МАТЕМАТИЧЕСКА ГИМНАЗИЯ ТУРНИР ПО МАТЕМАТИКА И ИНФОРМАТИКА "ЗА ТОРТАТА НА ДИРЕКТОРА" ТЕМА ПО МАТЕМАТИКА КЛАС Задача 1. Дадена е двуизмер

СОФИЙСКА МАТЕМАТИЧЕСКА ГИМНАЗИЯ ТУРНИР ПО МАТЕМАТИКА И ИНФОРМАТИКА ЗА ТОРТАТА НА ДИРЕКТОРА ТЕМА ПО МАТЕМАТИКА КЛАС Задача 1. Дадена е двуизмер СОФИЙСКА МАТЕМАТИЧЕСКА ГИМНАЗИЯ ТУРНИР ПО МАТЕМАТИКА И ИНФОРМАТИКА "ЗА ТОРТАТА НА ДИРЕКТОРА" ТЕМА ПО МАТЕМАТИКА 10-11 КЛАС Задача 1. Дадена е двуизмерна огледална стая във формата на правилен шестоъгълник

Подробно

54. НАЦИОНАЛНА ОЛИМПИАДА ПО МАТЕМАТИКА НАЦИОНАЛЕН КРЪГ Задача 1. Да се намерят всички тройки от естествени числа (x, y, z) такива, че 2005 x + y + 200

54. НАЦИОНАЛНА ОЛИМПИАДА ПО МАТЕМАТИКА НАЦИОНАЛЕН КРЪГ Задача 1. Да се намерят всички тройки от естествени числа (x, y, z) такива, че 2005 x + y + 200 54. НАЦИОНАЛНА ОЛИМПИАДА ПО МАТЕМАТИКА НАЦИОНАЛЕН КРЪГ Задача 1. Да се намерят всички тройки от естествени числа (x, y, z) такива, че x + y + 005 x + z + y + z е естествено число. Решение. Първо ще докажем,

Подробно

XXX МЕЖДУНАРОДЕН ТУРНИР НА ГРАДОВЕТЕ Пролетен тур, ОСНОВЕН ВАРИАНТ за клас РЕШЕНИЯ Задача 1. Правоъгълник е разделен на няколко по-малки право

XXX МЕЖДУНАРОДЕН ТУРНИР НА ГРАДОВЕТЕ Пролетен тур, ОСНОВЕН ВАРИАНТ за клас РЕШЕНИЯ Задача 1. Правоъгълник е разделен на няколко по-малки право XXX МЕЖДУНАРОДЕН ТУРНИР НА ГРАДОВЕТЕ Пролетен тур, ОСНОВЕН ВАРИАНТ за 10 1 клас РЕШЕНИЯ Задача 1 Правоъгълник е разделен на няколко по-малки правоъгълника Възможно ли е всяка отсечка, която свързва центровете

Подробно

Министерство на образованието, младежта и науката 60. Национална олимпиада по математика Областен кръг, г. Условия, кратки решения и кри

Министерство на образованието, младежта и науката 60. Национална олимпиада по математика Областен кръг, г. Условия, кратки решения и кри Министерство на образованието, младежта и науката 60. Национална олимпиада по математика Областен кръг, 1-1.0.011 г. Условия, кратки решения и критерии за оценяване Задача 11.1. Да се намерят всички стойности

Подробно

Microsoft Word - Tema-8-klas-PLOVDIV.doc

Microsoft Word - Tema-8-klas-PLOVDIV.doc МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА СЪЮЗ НА МАТЕМАТИЦИТЕ В БЪЛГАРИЯ Пролетен математически турнир 7 9 март 9 г., ПЛОВДИВ Тема за 8 клас Задача. Дадено е уравнението ax + 9 = x + 9ax 8x, където a е

Подробно

Основен вариант, клас Задача 1. (3 точки) За кои n съществуват различни естествени числа a 1, a 2,..., a n, за които сборът е естествено число

Основен вариант, клас Задача 1. (3 точки) За кои n съществуват различни естествени числа a 1, a 2,..., a n, за които сборът е естествено число Основен вариант, 0. 2. клас Задача. (3 точки) За кои n съществуват различни естествени числа, a 2,..., a n, за които сборът е естествено число? a 2 a 3 + + a n Решение: Ще докажем, че n =, n > 2. При n

Подробно

16. Основни методи за интегриране. Интегриране на някои класове функции Интегриране по части. Теорема 1 (Формула за интегриране по части). Ако

16. Основни методи за интегриране. Интегриране на някои класове функции Интегриране по части. Теорема 1 (Формула за интегриране по части). Ако 6. Основни методи за интегриране. Интегриране на някои класове функции. 6.. Интегриране по части. Теорема (Формула за интегриране по части). Ако функциите f(x) и g(x) садиференцируеми в интервала (a, b)

Подробно

036v-b.dvi

036v-b.dvi МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2010 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2010 Proceedings of the Thirty Ninth Spring Conference of the Union of Bulgarian Mathematicians Albena, April 6 10,

Подробно

СОФИЙСКА МАТЕМАТИЧЕСКА ГИМНАЗИЯ ТУРНИР ПО МАТЕМАТИКА И ИНФОРМАТИКА "ЗА ТОРТАТА НА ДИРЕКТОРА" ТЕМА ПО МАТЕМАТИКА 8 КЛАС Задача 1. Да се реши в цели чис

СОФИЙСКА МАТЕМАТИЧЕСКА ГИМНАЗИЯ ТУРНИР ПО МАТЕМАТИКА И ИНФОРМАТИКА ЗА ТОРТАТА НА ДИРЕКТОРА ТЕМА ПО МАТЕМАТИКА 8 КЛАС Задача 1. Да се реши в цели чис СОФИЙСКА МАТЕМАТИЧЕСКА ГИМНАЗИЯ ТУРНИР ПО МАТЕМАТИКА И ИНФОРМАТИКА "ЗА ТОРТАТА НА ДИРЕКТОРА" ТЕМА ПО МАТЕМАТИКА 8 КЛАС Задача 1. Да се реши в цели числа уравнението p( + b) = (5 + b) 2, където p е просто.

Подробно

Microsoft Word - VM-LECTURE21.doc

Microsoft Word - VM-LECTURE21.doc Лекция Числови редове Определения и примери Абсолютна и условна сходимост Числовите редове представляват безкрайни суми () = L L Величината се нарича общ член на реда Сумирането в () започва от = но по

Подробно

Microsoft Word - VM22 SEC55.doc

Microsoft Word - VM22 SEC55.doc Лекция 5 5 Диференциални уравнения от първи ред Основни определения Диференциално уравнение се нарича уравнение в което участват известен брой производни на търсената функция В общия случай ( n) диференциалното

Подробно

Microsoft Word - PRMAT sec99.doc

Microsoft Word - PRMAT sec99.doc Лекция 9 9 Изследване на функция Растене, намаляване и екстремуми В тази лекция ще изследваме особеностите на релефа на графиката на дадена функция в зависимост от поведението на нейната производна Основните

Подробно

Тест за кандидатстване след 7. клас Невена Събева 1. Колко е стойността на израза : 8? (А) 201; (Б) 226; (В) 1973; (Г) На колко е ра

Тест за кандидатстване след 7. клас Невена Събева 1. Колко е стойността на израза : 8? (А) 201; (Б) 226; (В) 1973; (Г) На колко е ра Тест за кандидатстване след 7 клас Невена Събева 1 Колко е стойността на израза 008 00 : 8? (А) 01; (Б) 6; (В) 197; (Г) 198 На колко е равно средното аритметично на 1, 1, и 1,? (А) 4, 15(6); (Б) 49, ;

Подробно

kk7w.dvi

kk7w.dvi Конкурсен изпит за НПМГ Акад. Л. Чакалов За профил математика 7 юли 2006 година Време за работа 4 астрономически часа. Задача 1. Дадени са изразите A = x 2 810 502 4x 5 и B = ( 100) 251.3. 2006 а) Докажете,

Подробно

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ЦЕНТЪР ЗА КОНТРОЛ И ОЦЕНКА НА КАЧЕСТВОТО НА УЧИЛИЩНОТО ОБРАЗОВАНИЕ УВАЖАЕМИ УЧЕНИЦИ, МАТЕМАТИКА 7. КЛАС 20 МАЙ

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ЦЕНТЪР ЗА КОНТРОЛ И ОЦЕНКА НА КАЧЕСТВОТО НА УЧИЛИЩНОТО ОБРАЗОВАНИЕ УВАЖАЕМИ УЧЕНИЦИ, МАТЕМАТИКА 7. КЛАС 20 МАЙ МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ЦЕНТЪР ЗА КОНТРОЛ И ОЦЕНКА НА КАЧЕСТВОТО НА УЧИЛИЩНОТО ОБРАЗОВАНИЕ УВАЖАЕМИ УЧЕНИЦИ, МАТЕМАТИКА 7. КЛАС МАЙ 1 г. ПЪРВИ МОДУЛ Вариант 1 Време за работа минути. ПОЖЕЛАВАМЕ

Подробно

Exam, SU, FMI,

Exam, SU, FMI, Поправителен изпит по Дискретни структури задачи СУ ФМИ 29. 08. 2016 г. Име: ФН: Спец.: Курс: Задача 1 2 3 4 5 Общо получени точки максимум точки 20 20 35 30 30 135 Забележка: За отлична оценка са достатъчни

Подробно

Homework 3

Homework 3 Домашно 3 по дисциплината Дискретни структури за специалност Информатика I курс летен семестър на 2015/2016 уч г в СУ ФМИ Домашната работа се дава на асистента в началото на упражнението на 25 26 май 2016

Подробно

Microsoft Word - PMS sec11.doc

Microsoft Word - PMS sec11.doc Лекция Матрици и детерминанти Определения Матрицата е правоъгълна таблица от числа Ако е матрица с m реда и стълба то означаваме () O m m m m ( ) За елементите на матрицата се използва двойно индексиране

Подробно

4- 7 kl_ Matematika TEST 2

4- 7 kl_ Matematika TEST 2 Първи модул За задачите от 1 до 16 в листа за отговори зачертайте със знака според вас отговор. 1.Стойността на израза 9а 2-30а + 25 при а = 5 е: А)100 Б)325 В)400 2.Изразът 25х 2-1 е тъждествено равен

Подробно

Microsoft Word - variant1.docx

Microsoft Word - variant1.docx МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА.05.019 г. Вариант 1 МОДУЛ 1 Време за работа 90 минути Отговорите на задачите от 1. до 0. включително отбелязвайте в листа

Подробно

26. ТУРНИР НА ГРАДОВЕТЕ ЕСЕНЕН ТУР Основен вариант, клас Задача 1. (5 точки) Функциите f и g са такива, че g(f(x)) = x и f(g(x)) = x за всяк

26. ТУРНИР НА ГРАДОВЕТЕ ЕСЕНЕН ТУР Основен вариант, клас Задача 1. (5 точки) Функциите f и g са такива, че g(f(x)) = x и f(g(x)) = x за всяк 26. ТУРНИР НА ГРАДОВЕТЕ ЕСЕНЕН ТУР Основен вариант, 10. - 12. клас Задача 1. (5 точки) Функциите f и g са такива, че g(f(x)) = x и f(g(x)) = x за всяко реално число x. Ако за всяко реално число x е в сила

Подробно

НАЦИОНАЛНА ПРИРОДО-МАТЕМАТИЧЕСКА ГИМНАЗИЯ АКАД. Л. ЧАКАЛОВ XXI МАТЕМАТИЧЕСКО СЪСТЕЗАНИЕ,,РИКИ 27 април 2014г. ПРИМЕРНИ РЕШЕНИЯ Задача 1. Да се реши ур

НАЦИОНАЛНА ПРИРОДО-МАТЕМАТИЧЕСКА ГИМНАЗИЯ АКАД. Л. ЧАКАЛОВ XXI МАТЕМАТИЧЕСКО СЪСТЕЗАНИЕ,,РИКИ 27 април 2014г. ПРИМЕРНИ РЕШЕНИЯ Задача 1. Да се реши ур НАЦИОНАЛНА ПРИРОДО-МАТЕМАТИЧЕСКА ГИМНАЗИЯ АКАД. Л. ЧАКАЛОВ XXI МАТЕМАТИЧЕСКО СЪСТЕЗАНИЕ,,РИКИ 7 април 0г. ПРИМЕРНИ РЕШЕНИЯ Задача. Да се реши уравнението ( n. ) ( ), където n е естествено число. ( n n.

Подробно

Microsoft Word - nbb2.docx

Microsoft Word - nbb2.docx Коректност на метода на характеристичното уравнение за решаване на линейно-рекурентни уравнения Стефан Фотев Пиша този файл, тъй като не успях да намеря в интернет кратко и ясно обяснение на коректността

Подробно

Задача 1. Да се реши уравнението софийски университет св. климент охридски писмен конкурсен изпит по математика II 31 март 2019 г. Tема 1 (x 1) x 2 =

Задача 1. Да се реши уравнението софийски университет св. климент охридски писмен конкурсен изпит по математика II 31 март 2019 г. Tема 1 (x 1) x 2 = Задача 1. Да се реши уравнението софийски университет св. климент охридски писмен конкурсен изпит по математика II 1 март 019 г. Tема 1 x 1) x = x x 6. Решение: 1.) При x

Подробно

1 Основен вариант за клас Задача 1. Хартиен триъгълник, един от ъглите на който е равен на α, разрязали на няколко триъгълника. Възможно ли е

1 Основен вариант за клас Задача 1. Хартиен триъгълник, един от ъглите на който е равен на α, разрязали на няколко триъгълника. Възможно ли е 1 Основен вариант за 10 12 клас Задача 1 Хартиен триъгълник, един от ъглите на който е равен на α, разрязали на няколко триъгълника Възможно ли е всички ъгли на всички получени тръгълници да са по-малки

Подробно

(Microsoft Word - \342\340\360\350\340\355\362 2)

(Microsoft Word - \342\340\360\350\340\355\362 2) ТЕХНИЧЕСКИ УНИВЕРСИТЕТ ВАРНА ТЕСТ ПО МАТЕМАТИКА 0 юли 0 г Вариант Периодичната десетична дроб, () е равна на: 6 6 6 ; б) ; в) ; г) 5 50 500 9 Ако a= 6, b= 6 +, то изразът a + b има стойност: b a ; б) ;

Подробно

(не)разложимост на полиноми с рационални коефициенти Велико Дончев Допълнителен материал за студентите по Висша алгебра и Алгебра 2 на ФМИ 1 Предварит

(не)разложимост на полиноми с рационални коефициенти Велико Дончев Допълнителен материал за студентите по Висша алгебра и Алгебра 2 на ФМИ 1 Предварит (не)разложимост на полиноми с рационални коефициенти Велико Дончев Допълнителен материал за студентите по Висша алгебра и Алгебра 2 на ФМИ 1 Предварителни сведения и твърдения Както е ясно от основната

Подробно

IATI Day 1 / Senior Задача Activity (Bulgarian) X INTERNATIONAL AUTUMN TOURNAMENT IN INFORMATICS SHUMEN 2018 При лошо време навън Лора и Боби обичат д

IATI Day 1 / Senior Задача Activity (Bulgarian) X INTERNATIONAL AUTUMN TOURNAMENT IN INFORMATICS SHUMEN 2018 При лошо време навън Лора и Боби обичат д Задача Activity (Bulgarian) При лошо време навън Лора и Боби обичат да се събират и да играят настолни игри. Една от любимите им игри е Activity. В тази задача ще разгледаме обобщение на играта. Играта

Подробно

Как да съставим задачи като използваме подобните триъгълници, свързани с височините на триъгълника

Как да съставим задачи като използваме подобните триъгълници, свързани с височините на триъгълника Съставяне на задачи с подобни триъгълници, свързани с височините на триъгълника Бистра Царева, Боян Златанов, Катя Пройчева Настоящата работа е адресирана към учителите по математика и техните изявени

Подробно

DZI Tema 2

DZI Tema 2 МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА 6.05.05 г. ВАРИАНТ Отговорите на задачите от. до 0. включително отбелязвайте в листа за отговори!. Кое от числата е различно

Подробно

Линейна алгебра 7. Умножение на матрици. Обратими матрици. Матрични уравнения специалности: Математика, Бизнес математика, Приложна математика, I курс

Линейна алгебра 7. Умножение на матрици. Обратими матрици. Матрични уравнения специалности: Математика, Бизнес математика, Приложна математика, I курс . Обратими матрици. Матрични уравнения специалности: Математика, Бизнес математика, Приложна математика, I курс лектор: Марта Теофилова Кратка история Матричното умножение е въведено от немския математик

Подробно

Microsoft Word - VypBIOL-02-Kin-Okryznost.doc

Microsoft Word - VypBIOL-02-Kin-Okryznost.doc ВЪПРОС КИНЕМАТИКА НА ДВИЖЕНИЕТО НА МАТЕРИАЛНА ТОЧКА ПО ОКРЪЖНОСТ Във въпроса Кинематика на движението на материална точка по окръжност вие ще се запознаете със следните величини, понятия и закони, както

Подробно

Microsoft Word - VM-2-7-integrirane-na-racionalni-funkcii-seminar.doc

Microsoft Word - VM-2-7-integrirane-na-racionalni-funkcii-seminar.doc 7. Интегриране на рационални функции Съдържание. Пресмятане на неопределен интеграл от елементарни дроби. Интегриране на правилни рационални функции. Интегриране на неправилни рационални функции ТЕОРИЯ

Подробно