PROCEEDINGS OF UNIVERSITY OF RUSE , volume 56, book 11. FRI NSMTS(S)-03 МАТЕМАТИЧЕСКИ МОДЕЛ НА НЕСТАЦИОНАРНИЯ ТОПЛООБМЕН ПРИ ПИРОЛИЗАТА НА

Подобни документи
РЕЦЕНЗИЯ на дисертационна работа за придобиване на ОНС Доктор по докторантска програма от професионално направление 5.4 Енергетика, специалност Промиш

55 th Science Conference of Ruse University, Bulgaria, 2016 SAT HT-04 NUMERICAL MODELLING OF A HEAT EXCHANGE WITH HEAT TUBES AND EXPERIMENTAL VA

Приложение на методите на Рунге Кута за решаване на уравненията за отравяне на ядрения реактор 1. Въведение В доклада са направени поредица от изчисле

Лекция Класификация с линейна обучаваща машина Обучаващата машина може да бъде дефинирана като устройство, чиито действия са повлияни от миналия опит

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ , том 51, серия 4 Параметрично 3D проектиране на елемент от ръчен винтов крик Ахмед Али Ахмед Parametric

ГОДИШНИК НА УНИВЕРСИТЕТА ПО АРХИТЕКТУРА, СТРОИТЕЛСТВО И ГЕОДЕЗИЯ СОФИЯ Том Volume Брой Issue ANNUAL OF THE UNIVERSITY OF ARCHITECTURE, CIVIL E

ISSN

ISSN

годишно разпределение по математика за 8. клас 36 учебни седмици по 3 учебни часа = 108 учебни часа I срок 18 учебни седмици = 54 учебни часа II срок

PROCEEDINGS OF UNIVERSITY OF RUSE , Volume 55, book 1.2. НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ , Том 55, серия 1.2 SAT HT-03 Numer

Vocational Education Volume 19, Number 4, 2017 Професионално образование School for Teachers Училище за учители ГРАФИЧЕН МЕТОД ЗА РЕШАВАНЕ НА УРАВНЕНИ

ГОДИШНИК НА УНИВЕРСИТЕТА ПО АРХИТЕКТУРА, СТРОИТЕЛСТВО И ГЕОДЕЗИЯ СОФИЯ Том Volume Брой Issue ANNUAL OF THE UNIVERSITY OF ARCHITECTURE, CIVIL E

ANALYTICAL MODELING, RESEARCH AND CONTROL OF PHYSICAL LABORATORY FESTO-MODEL INSTALLATION OF TECHNOLOGY-part 1 (modeling and analysis) АНАЛИТИЧНО МОДЕ

УТВЪРДИЛ Директор: (Име, фамилия, подпис) Първи учебен срок 18 седмици х 4 часа седмично = 72 часа ГОДИШНО ТЕМАТИЧНО РАЗПРЕДЕЛЕНИЕ по учебния предмет

Проектиране на непрекъснат ПИД - регулатор. Динамичните свойства на системите за автоматично регулиране, при реализация на първия етап от проектиранет

Microsoft Word - stokdovo saprotivlenie.doc

4PBG B.book

Р Е Ц Е Н З И Я От доц. д-р Соня Тотева Женкова, дм Медицински университет - София, Катедра по психиатрия Директор на Държавна психиатрична болница за

ISSN

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ , том 47, серия 3.1 Обучение по Числени методи и моделиране на вериги и полета част I в магистърския кур

B3-Dikanarov.doc

036v-b.dvi

PROCEEDINGS OF UNIVERSITY OF RUSE , volume 56, book 4 FRI TMS-09 EXHAUST GAS RECIRCULATION PARAMETERS IN A DIESEL ENGIN 1 Assoc. Prof. Z

Изследване на устойчивостта на равновесното състояние на системи с краен брой степени на свобода Следващият пример илюстрира основните разсъждения при

r_AcademicCurriculum_BG

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ , том 50, серия 4 Изследване коефициента на напречно увличане на пневматични гуми за леки автомобили Рос

Microsoft Word - Pinch_Technology_tetr.doc

ГОДИШНИК НА УНИВЕРСИТЕТА ПО АРХИТЕКТУРА, СТРОИТЕЛСТВО И ГЕОДЕЗИЯ СОФИЯ Том Volume Брой Issue ANNUAL OF THE UNIVERSITY OF ARCHITECTURE, CIVIL E

Microsoft Word - Lecture 14-Laplace Transform-N.doc

munss2.dvi

АВТОМАТИЗИРАН КОМПЛЕКС ЗА СИТОПЕЧАТ ВЪРХУ ЦИЛИНДРИЧНИ ПОВЪРХНИНИ

ПРОГРАМА ПО МАТЕМАТИКА I. Алгебра 1. Цели и дробни рационални изрази и действия с тях. Формули за съкратено умножение. 2. Квадратен корен. Корен n-ти.

Основен вариант за клас Задача 1. (4 точки) На графиката на полином a n x n + a n 1 x n a 1 x + a 0, чиито коефициенти a n, a n 1,..., a 1

Microsoft Word - 600_8-12

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ , том 47, серия 4 Сравнително изследване на някои от характеристиките на измервателните системи за позиц

1 УНИВЕРСИТЕТ ЗА НАЦИОНАЛНО И СВЕТОВНО СТОПАНСТВО Катедра Информационни технологии и комуникации Р Е Ц Е Н З И Я От: Доц. д-р Димитър Иванов Петров На

ИНСТРУКЦИИ ЗА КОНТРОЛ НА МЕТМА. И ОЦЕНКА НА ТЕХНИqЕСКОТО CЪCТORНUE НА ЕАЕМЕНТИ И СИСТЕМИ ОТ котли. ПР6ИНИ и тp'ыюрово.пи в ТЕЦ ПРИЛОЖЕНИЕ 3 Изuсk6анuа

NUMERICAL EXPERIMENT OF THE BANDPASS FILTER WITH VIN BRIDGE PART.1. Plamen Angelov Angelov, Burgas Free University, Milena Dimitorova

ПЛОВДИВСКИ УНИВЕРСИТЕТ

Препис:

FRI-216-1-NSMTS(S)-03 МАТЕМАТИЧЕСКИ МОДЕЛ НА НЕСТАЦИОНАРНИЯ ТОПЛООБМЕН ПРИ ПИРОЛИЗАТА НА ИЗЛЕЗЛИ ОТ УПОТРЕБА АВТОМОБИЛНИ ГУМИ MATHEMATICAL MODEL OF NON-STATIONARY HEAT TRANSFER DURING THE PROCESS OF PYROLYSIS FOR END-OF-LIFE AUTOMOBILE TIRES Assoc. Prof. Ivanka Zheleva, DcS Department of Thermotechnics, Hydraulics and Ecology, Angel Kanchev Univesity of Ruse Tel.: 082-888 585 E-mail: izheleva@uni-ruse.bg Principal Assist. Prof. Ivan Georgiev, PhD Department of Applied Mathematics and Statistics, Angel Kanchev Univesity of Ruse Рhone: 082-888 418 Е-mail: igeorgiev@uni-ruse.bg Dzhichan Мenseidov, PhD Student Department of Thermotechnics, Hydraulics and Ecology, Angel Kanchev Univesity of Ruse Рhone: 082-888 418 Е-mail: dmenseidov@uni-ruse.bg Assoc. Prof. Margarita Fuilipova, PhD Department of Thermotechnics, Hydraulics and Ecology, Angel Kanchev Univesity of Ruse Tel.: 082-888 418 E-mail: mfilipova@uni-ruse.bg Abstract: Mathematical model of non-stationary heat transfer during the process of pyrolysis of end-of-life automobile tires is developed. Numerical procedure based on MATLAB for solving model equations is used. Some modeling results for the temperature are presented and commented in the paper Keywords: Mathematical model, Pyrolysis, End-of-life Tires. JEL Code: I29 INTRODUCTION Процесът пиролиза се прилага за химическа обработка на излезе от употреба автомобилни гуми (ИУАГ). Той се провежда в химически реактори (тигели), където гумите се зареждат и тигела се подгрява до определена температура, под въздействието на която гумите се разлагат до няколко фракции - течна, твърда и газообразна [1]. EXPOSITION Съществува ниско температурна пиролиза (до около 400 oc ) и високо температурна пиролиза (до около 800 oc). Пиролизата е химически процес, който се осъществява без присъствието на кислород. След началното загряване процесът продължава около десет часа - 64 -

след което тигелът се оставя да се охлади. След това течните и твърдите продукти на пиролизата се изваждат и така приключа един пиролизен цикъл. Фиг.1. Пиролизна установка с три тигела (камери) По-нататък ще разглеждаме нестационарния топлообмен в пиролизна установка, показана на фиг.1. в която има три камери [2]. МАТЕМАТИЧЕСКИ МОДЕЛ УРАВНЕНИЕ: 2T 2T 2T k 2 2 2 t y z x (1) Т температура в келвини Т[k], к коефициент на топлопроводност, W/(m.K). ГЕОМЕТРИЯ НА ОБЛАСТТА Фиг.2. Схема на дъното на уредбата с три пиролизни камери 1-6 горелки, К1, К2, К3 пиролизни камери, PQ централно сечение, ОА дължина 5,5 m, OC - ширина 1,9 m, диаметри на кръговете 1,4 m - 65 -

Фиг.3. Схема на вертикален разрез на уредбата в сечение PQ a1b1, a2b2, a3b3 диаметри на пиролизните камери 1,4 m, OH височина 1,45 m Всеки от тигелите се подгрява чрез една или две газови горелки монтирани на дъното на установката. Обикновено се подгрява първият тигел чрез една горелка в продължение на определен период от време. След това този тигел се изважда за охлаждане, подгрява се вторият тигел за следващ период от време, след това той се изважда, после се подгрява третият тигел за следващ период от време. Така осъществява един цикъл за работа на установката. Възможен е и паралелен режим на работа, при който едновременно се подгряват всички тигели и процесът в тях завършва едновременно. От математическа гледна точка описанието на преноса на топлина при този процес представлява нестационарна три мерна нелинейна задача, като в своята цялост е много сложна за изследване. Ето защо тук ще разработим йерархия от двумерни нестационарни модели за да я опростим. I етап Разглеждаме процесите на пренос на топлина на дъното на инсталацията където ще предположим, че действа само една горелка. Тогава геометричната област на изследването е показана на Фиг. 4: Фиг.4. Схема на изчислителната област с една горелка - 66 -

Материалът на правоъгълника е от огнеупорни тухли, а дъната на тигелите (кръговете 1, 2 и 3, фиг.4). са стоманени. В началният момент на процеса температурата е 20 oc (293 К). горелката е представена като линията p1q1 върху оста 0x, от където се повишава температурата по зададен закон в времето. Целта на първият етап от моделирането е да намерим температурата в областта ОАВС, вклюяително и в кръговете 1, 2 и 3 като функция на времето за t 0 s 36000 s. Подгряването на горелката се представя така: За някакъв период t n температурата се повишава постепенно по параболичен закон с максимум в средата на отсечката p1 q1, а след това до края на процеса остава постоянно равна на достигнатия параболичен закон. Фиг.5. Тримерна графика на подгряването при p1 = 2/15, q1=14/15, начална температура 20оС (293К), период на загряване максимална температура 900 К tn = 360 с и И така моделът се състои от уравнението: 2T 2T (2) k 2 2, t y x което трябва да реши в двусвързаната геометрична област от фиг.4. при следните гранични и начални условия: При t t 0 ; T 20 o C за x, y за y 0, t x 0, p1 q1, X p За y H t, x. (3) k1 T T0 y (4) k1 T T0 y (5) - 67 -

k 2 T T0 x За x 0 t, y. k 2 T T0 x За x L t, y. (6) (7) В резултат на решението на тази задача намираме температурата във всяка точка от областта ОАВС (фиг. 4). II етап Задачата за моделиране на нестационарния топлобмен във вертикалното сечение PQ на пиролизните камери 1, 2 и 3 ( фиг.3) е уравнение: 2T 2T (9) k 2 2 t z x Гранични и начални условия (10) При t 0, T T0 При y 0 T T01 t T T02 t x a1,b 1 x a 2,b 2 x a 3,b 3 При y H (12) T T03 t x a1,b1 x a 2,b 2 (13) k 4 T T0 y x a 3,b 3 При (11) (14) x a1 x b1 x a2 x b2 y 0 и x a3 y H k 5 T T0 x (15) x b3 Тук функциите Т01, Т02 и Т03, които са гранични условия, се определят от решавнето на първия етап от моделирането. Решението на тази задача води до определянето на температурите в трите тигела като функции на времето. За решаване на математическите задачи от етапите I II е използвана програмата среда МАТЛАБ. РЕЗУЛТАТИ И ОБСЪЖДАНЕ На следващите фигури са представени резултати от решаването на съответните задачи: - 68 -

Фиг.6. Графика на температурното поле в келвини един час след началото на процеса за равнината z = 0. Фиг.7. Графика на температурното поле в келвини и градиента на температурата един час след началото на процеса за равнината z = 0. - 69 -

Фиг.8. Графика на температурното поле в келвини и изолиниите на температурата един час след началото на процеса за равнината z = 0. Фиг.9. Графика на температурното поле в градуси по Целзий, изолиниите на температурата и градиента на температурата един час след началото на процеса за вертикална равнина На Фиг. 6 е представено температурното поле в Келвини. На Фиг.7 е начертана графика на температурното поле в келвини и градиента на температурата, а на Фиг.8. температурното поле. изолиниите на температурата и градиента на температурата. Тези фигури показват развитието на процеса в хоризонталната равнина на дъното на установката. Фиг.9 представя процеса във вертикална равнина, минаваща по диаметрите на пиролизните камери. Всички фигури представят процеса един час след началото му. При зададеното - 70 -

широкоплощно загряване един час след началото на процеса в първата камера е достигната средна температура на дъното около 750 К, във втората камера 680К, а в третата 650К CONCLUSION Разработен е адекватен математически модел на нестационарния топлообмен при процес на пиролиза за преработване на излезли от употреба автомобилни гуми, състоящ се от два последователни етапа. Разработен е числен алгоритъм за решаване на съответните математически задачи, осъществен в МАТЛАБ. Представени са резултати за температурата, получени от първите три етапа на моделирането. Въпреки направените опростяващи предположения, разработеният модел е надеждно средство за теоретично изследване на сложните процеси, които се развиват при пиролизата и ще послужи за по-нататъшното й задълбочено изучаване, както и за основа на проектиране на установка за автоматично управление по температурата на процеса. REFERENCES Pelovski Y., Dombalov I. and colleagues. (2007). Metodi za tretirane i opolzotvoryavane na tvardi bitovi otpadaci. Sofia. (Оригинално заглавие: Пеловски Й., Домбалов И. и колектив. 2007. Методи за третиране и оползотворяване на твърди битови отпадъци. София) Zheleva Iv. (2015). Matematichesko modelirane na hidrodinamikata i toplomasoobmena v himikotehnologichni procesi. Disertacia za prisazhdane na nauchnata stepen doctor na naukite. Rusenski universitet Angel Kanchev. (Оригинално заглавие: Желева Ив. 2015. Математическо моделиране на хидродинамиката и топломасообмена в химикотехнологични процеси. Дисертация за присъждане на научната степен доктор на науките. Русенски университет Ангел Кънчев ). - 71 -